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1. Chapter 2, Problem 2

To make this problem a little cleaner to look at, we will employ

tensor notation so that x = (x1, . . . , xn) is a vector with components

xi, and the (i, j) component of a matrix will be denoted aij. This also

means we use the Einstein summation convention, where the sum is

implied if upper and lower indices are the same. With this, let aij be

the (i, j) entry of the orthogonal matrix O. We see:

v(xi) = u(yi)

With yi := aijx
j. Then, ∂yi

∂xk
= aijδ

j
k = aik. Using this,

∂v

∂xk
=
∂u

∂yi
aik

And similarly,

(1.1)
∂2v

∂xk∂xk
=

∂2u

∂yi∂yj
aika

j
k

Since O is orthogonal, O−1 = OT . In tensor notation, this implies

that
∑

k a
i
ka

j
k = δij, since if the entries of O−1 are denoted bij, we see

that aikb
k
j = δij. In the orthogonal case, however, we see that bij = aji ,

hence the above. Now, summing over all k in (1.1), we have:

Date: September 3, 2017.
1



2 KELLER VANDEBOGERT

∑
k

vxkxk = ∆v

=
∂2u

∂yi∂yj

∑
k

aika
j
k

=
∑
j

∂2u

∂yi∂yj
δij

=
∑
j

uxjxj

= ∆u = 0

(1.2)

So that v is harmonic as well, and we are done.

2. Chapter 2, Problem 4

Suppose U ⊂ Rn. Then, define uε := u + ε|x|2. Clearly u < uε for

all ε > 0.

Since u is harmonic, ∆u = 0, implying that ∆uε = 0 + 2nε > 0,

and similarly, uε is continuous and hence attains its maximum and

minimum on Ū (since this set is compact).

Now for sake of contradiction, suppose that u attains its maximum

on the interior of U . Then, set M := maxU u(x). Obviously uε is

bounded by M + εR, where R := maxŪ |x|2 (which again exists and is

finite as Ū is compact).

Now for x = (x1, x2, . . . , xn), since ∆uε > 0 for all x, we know that

∂xixiuε > 0 for at least one xi. However, this then implies that no point

of U is a local maximum. Since we know uε has to obtain a maximum

on Ū , this then implies that uε attains its maximum at some x0 ∈ ∂U .

From here, this implies that M ≤ uε(x0), for if M > u(x0), then

M + ε|y|2 > M > u(x0) would contradict maximality at x0, where

u(y) = M . We then have the following chain of inequalities:
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u(x) ≤M ≤ uε(x0) ≤M + εR

Letting ε → 0, we see that u0(x0) = u(x0) = M , contradicting the

fact that u attains its maximum at an interior point. Hence we see

max
Ū

u = max
∂U

u

As desired.

3. Chapter 2, Problem 5

(a). Following the proof for the case of harmonic v, define φ(r) :=ffl
B(x,r)

v(y)dy. Then, we have:

φ′(r) =

 
B(0,1)

v(x+ rz) · zdy

=

 
B(x,r)

∂v

∂η
dy

=
r

n

 
B(x,r)

∆vdy ≥ 0

(3.1)

Thus, φ′(r) ≥ 0 implies that φ is an increasing function. This means

that lim
r→0

φ(r) ≤ φ(r0) for all r0 ≥ 0. Taking the limit, however:

lim
r→0

φ(r) = lim
r→0

 
B(x,r)

v(y)dy = v(x)

Hence v(x) ≤
ffl
B(x,r)

v(y)dy for any B(x, r), and we are done.

(b). Suppose that v attains its maximum at x0 ∈ U , v(x0) := M .

Then, for 0 < r < dist(x0, ∂U), use the result of part (a):

M = v(x0) ≤
 
B(x0,r)

v(y)dy ≤M
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Which then forces u(y) = M as well for all y ∈ B(x0, r). Hence, the

set {x : V (x) = M} is clopen in the induced topology.

Now, since we’ve assumed that U is bounded, we know that Ū is

compact and hence has finitely many connected components since Rn

is a locally connected space. Hence, v reduces to a constant on a

clopen subset of the connected component of x, forcing these two sets

to actually be equal.

Thus,

max
Ū

v = max
∂U

v

As desired.

(c). Since φ is smooth and convex, φ′′ ≥ 0. Using this, assume that u

is harmonic. Then:

∂v

∂xi
=
∂φ

∂u

∂u

∂xi
∂2v

∂xi∂xi
=
∂2φ

∂u2

( ∂u
∂xi

)2

+
∂φ

∂u

∂2u

∂xi∂xi

Summing over all i, we have:

∆v =
∑
i

∂2φ

∂u2

( ∂u
∂xi

)2

+
∂φ

∂u
∆u

=
∂2φ

∂u2
|Du|2 ≥ 0

(3.2)

So that v is subharmonic by definition.

(d). Set v(x) = |Du|2 =
∑

j

(
∂u
∂xj

)2

. Then, take our first partial:

∂v

∂xi
= 2

∑
j

∂u

∂xj

∂2u

∂xi∂xj
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And again:

∂2v

∂xi∂xi
= 2

∑
j

( ∂2u

∂xi∂xj

)2

+
∂u

∂xj

∂3u

∂xi∂xi∂xj

= 2
∑
j

( ∂2u

∂xi∂xj

)
+
∂u

∂xj

∂

∂xj

( ∂2u

∂xi∂xi

)(3.3)

Summing over all i, we have:

∆v = 2
∑
i

∑
j

( ∂2u

∂xi∂xj

)2

+
∂u

∂xj

∂3u

∂xi∂xi∂xj

= 2
∑
i

∑
j

( ∂2u

∂xi∂xj

)2

+ 2
∑
j

∂u

∂xj

∂

∂xj

(
∆u
)

= 2
∑
i

∑
j

( ∂2u

∂xi∂xj

)2

≥ 0

(3.4)

Where the last term is just a sum of nonnegative terms, and is hence

nonnegative. Thus by definition, v is subharmonic.

4. Chapter 2, Problem 6

Following the hint, define λ := maxŪ |f |. Then,

∆u+ ∆
|x|2

2n
λ = −f + λ ≥ 0

Hence v(x) := u+ |x|2
2n
λ is subharmonic and we can employ the result

of part (b) of the previous problem to see that v obtains its maximum

on the boundary ∂U . Now, since U is bounded, M := maxŪ |x|2 exists

and is finite, and it is also clear that u ≤ v in U .

Using this,

max
Ū
|u| ≤ max

∂U
|v| ≤ max

∂U
|g|+ M

2n
max
Ū
|f |
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Obviously M
2n
≤ M , and we can now set C := max{M, 1}. This

constant is easily seen to satisfy

max
Ū
|u| ≤ C

(
max
∂U
|g|+ max

Ū
|f |
)

And since M only depends on U , we see that C does as well.


