ADVANCED PARTIAL DIFFERENTIAL EQUATIONS:
HOMEWORK 2

KELLER VANDEBOGERT

1. CHAPTER 2, PROBLEM 2

To make this problem a little cleaner to look at, we will employ
tensor notation so that z = (x!, ... ,2") is a vector with components
x%, and the (i,7) component of a matrix will be denoted az'-. This also
means we use the Einstein summation convention, where the sum is

implied if upper and lower indices are the same. With this; let aj- be

the (7, j) entry of the orthogonal matrix O. We see:

v(') = u(y')

With ¢ := a;'»:vj. Then, 2%

Sk = a0, = aj. Using this,

v Ou
oxk — oyt "
And similarly,
v 0%u

1.1 = ——a,aj
(11) Ozkozk  Oyioys e

Since O is orthogonal, O~! = OT. In tensor notation, this implies
that 3, afal = &I, since if the entries of O~! are denoted b, we see
that ayb’ = 4% In the orthogonal case, however, we see that b} = al,
hence the above. Now, summing over all k£ in (1.1), we have:
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Z VUypkpk = Av
k

o? o

= 8y"6uyj Z a,a;,

(1.2) ;

N Z 8y (9y3 9;

= Z (e
J

=Au=0

So that v is harmonic as well, and we are done.

2. CHAPTER 2, PROBLEM 4

Suppose U C R". Then, define u, := u + €|z|?>. Clearly u < u, for
all € > 0.

Since u is harmonic, Au = 0, implying that Au. = 0+ 2ne > 0,
and similarly, u, is continuous and hence attains its maximum and
minimum on U (since this set is compact).

Now for sake of contradiction, suppose that u attains its maximum
on the interior of U. Then, set M := maxy u(z). Obviously u. is
bounded by M + ¢R, where R := maxg |z|? (which again exists and is
finite as U is compact).

Now for z = (x', z2, ... z"), since Au, > 0 for all z, we know that
Oyigitte > 0 for at least one z¢. However, this then implies that no point
of U is a local maximum. Since we know u, has to obtain a maximum
on U, this then implies that u. attains its maximum at some x, € OU.

From here, this implies that M < wuc(zo), for if M > wu(zg), then
M + ely|*> > M > u(x) would contradict maximality at g, where

u(y) = M. We then have the following chain of inequalities:



ADVANCED PARTIAL DIFFERENTIAL EQUATIONS: HOMEWORK 2 3

u(z) < M < u(zg) < M+eR

Letting € — 0, we see that ug(zg) = u(xg) = M, contradicting the

fact that u attains its maximum at an interior point. Hence we see

maxu = maxu
U oUu

As desired.

3. CHAPTER 2, PROBLEM 5

(a). Following the proof for the case of harmonic v, define ¢(r) :=

JEB(x,r) v(y)dy. Then, we have:

¢ (r) = ]{3(071) v(x +rz) - zdy

(3.1) —f
. B(z,r) 877
T

= —][ Avdy > 0
 J B(z,r)

Thus, ¢/(r) > 0 implies that ¢ is an increasing function. This means

that lil% o(r) < ¢(rg) for all ro > 0. Taking the limit, however:
r—

lim ¢(r) = lim ) v(y)dy = v(z)

Hence v(z) < fB(x " v(y)dy for any B(z,r), and we are done.

(b). Suppose that v attains its maximum at zy € U, v(xg) := M.

Then, for 0 < r < dist(zg, OU), use the result of part (a):

M =v(zg) < ][ v(y)dy < M
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Which then forces u(y) = M as well for all y € B(xzg,r). Hence, the
set {x : V(x) = M} is clopen in the induced topology.

Now, since we've assumed that U is bounded, we know that U is
compact and hence has finitely many connected components since R™
is a locally connected space. Hence, v reduces to a constant on a
clopen subset of the connected component of x, forcing these two sets
to actually be equal.

Thus,

max v = maxuv
U oUu

As desired.

(c). Since ¢ is smooth and convex, ¢” > 0. Using this, assume that u

is harmonic. Then:

dv  0¢ du
or; %83@
*v _ @(6u)2+@ 0*u
0x;0x;  Ou?\0x; ou Ox;0x;

Summing over all ¢, we have:

Av = 82¢<6u>2+ agbAu

T L 9u2\dx;) T du
(3.2) g
0%

So that v is subharmonic by definition.

2
(d). Set v(z) = [Dul* = 3, (%) . Then, take our first partial:

ov ou 0%u
— 2 _—
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And again:

0% Pu \2 Ou  Qu

ou 0 0?
- 22 <8m gm) 8xuj Ox; (0%5&0,)

Summing over all ¢, we have:

(3.3)

o2 ou &
Av =2 Z Z (8:ci;xj)2 * 8;; 81'@-3331;3%
2
(3.4) _2ZZ<8$ 8%) Zgﬂz 3i]< )
- QZZ (83: (’336])

Where the last term is just a sum of nonnegative terms, and is hence

nonnegative. Thus by definition, v is subharmonic.

4. CHAPTER 2, PROBLEM 6

Following the hint, define A\ := maxg |f|. Then,

i

Au+Af;A_—f+Azo

Hence v(z) := u+ 5~ =2 )\ is subharmonic and we can employ the result
of part (b) of the previous problem to see that v obtains its maximum
on the boundary OU. Now, since U is bounded, M := maxg |z|* exists
and is finite, and it is also clear that © < v in U.

Using this,

] < max|o] < max|g + - max ||
ml_?x U _I%%X v _n%%x g o mgx
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Obviously 22 < M, and we can now set C' := max{M,1}. This

constant is easily seen to satisfy

<
mas [u] < C(ma lg| + ma | 1)

And since M only depends on U, we see that C' does as well.



